Inorganic Chemistry

Grid Expansion: a Rhombiclike [L₄Fe₂(Ag₂)₂] Complex Containing Ag₂ Dumbbells at Two Vertices

Benjamin Schneider, Serhiy Demeshko, Sebastian Dechert, and Franc Meyer*

Institute of Inorganic Chemistry, Georg-August-University Göttingen, Tammannstraße 4, D-37077 Göttingen, Germany

Supporting Information

ABSTRACT: The pyrazolate-based ditopic ligand HL forms a strongly hydrogen-bonded corner complex dimer $[Fe^{II}(HL)_2]_2(BF_4)_4$ (1) with a $[2 \times 2]$ gridlike arrangement of four ligand strands. The two empty vertices can then be filled with $\{Ag_2\}^{2+}$ dumbbells, yielding the unprecedented diferric complex $[L_4Fe^{III}_2(Ag_2^I)_2](BF_4)_6$ (2) that features a rhombiclike structure with an almost planar hexagon of metal ions.

ultinuclear grid-type metal complexes, in which \mathbf{I} perpendicular ligand strands containing *n* binding pockets form 2D $[n \times n]$ metalloarrays composed of 2n ligands and n^2 metal ions, have gained immense popularity during the past decade.¹ This is not only because grid complexes are aesthetically attractive molecular architectures but also because switchable grids might become components of future information storage and processing devices.² While most of the known grids are homometallic and squarelike, elaborate strategies for the toposelective synthesis of heterometallic systems and molecular rectangles have been developed.¹ These strategies include (i) the use of heteroditopic ligands with distinct coordination sites that recognize and selectively bind different metal ions,³ (ii) protection/deprotection routes starting from homoditopic ligands,⁴ and (iii) sequential twostep syntheses via (kinetically inert) mononuclear corner complexes, the so-called "Coupe du Roi" strategy.⁵

Some pyrazolate (pz)-based compartmental ligands⁶ have proven to be well-suited for the assembly of grid complexes.^{7,8} Using the rigid bis(tridentate) pyrazole ligand HL (HL = 3,5bis(bipyridyl)pyrazole; Scheme 1), we recently reported a novel type of $[2 \times 2]$ Fe₄ grid complex that exhibits unprecedented multistability with respect to spin crossover and redox switching.⁷ In some experiments aimed at oxidizing the $[LFe_4^{II}]^{4+}$ grid to the mixed-valent $[L_4Fe_2^{II}Fe_2^{III}]^{6+}$ species, we now observed, as a minor side product, the formation of an unusual heterometallic $[L_4 Fe^{III}_2(Ag^I_2)_2]^{6\scriptscriptstyle+}$ complex. It appears that partial grid degradation and replacement of some Fe^{II} by Ag^I, concomitant with oxidation of the remaining Fe, had occurred in that reaction. In this Communication, we present a targeted high-yield synthesis and full characterization of the unique hexametallic Fe^{III}/Ag^I complex. While Ag^I ions have been used to assemble discrete $[2 \times 2]$ Fe₄ complexes bearing peripheral N-donor groups into 1D and 2D superstructures,⁵ this appears to be the first report of a system containing both Ag and Fe within a gridlike motif.

Scheme 1. Ligand HL and Schematic Illustration of the One-Pot Synthesis of 2 via the Intermediate Corner Complex 1^a

 $^a{\rm Black}$ bar: ligand molecule. Red balls: Fe^{II}. Blue balls: Fe^{III}. Gray balls: AgI.

The controlled synthesis of $[L_4Fe^{III}_2(Ag_2^I)_2]^{6+}$ is best carried out as a one-pot reaction. In a first step, the ligand HL and 0.5 equiv of Fe(BF₄)₂ are combined to give the "corner complex" [Fe^{II}(HL)₂](BF₄)₂ (1) as a key intermediate. 1 has been isolated and characterized by X-ray diffraction. Its solid-state structure reveals that this compound forms dimers that are held together by four N^{pz}-H···N^{py} (py = pyridine) hydrogen bonds (Figure 1). Hence, 1 is best described as [Fe^{II}(HL)₂]₂(BF₄)₄,

Figure 1. Molecular structure of the hydrogen-bonded dimer $\{[Fe(HL)_2]^{2+}\}_2$ of 1. Solvent molecules and counterions are omitted for clarity.

which essentially is a $[2 \times 2]$ grid devoid of the metal ions at two opposite corners of the square. The 80 K Mössbauer spectrum confirms the low-spin ferrous nature of 1 ($\delta = 0.32$ mm s⁻¹ and $\Delta E_Q = 0.88$ mm s⁻¹; Figure S1 in the Supporting Information, SI). N^{pz}...N^{py} distances of 2.90–2.99 Å (Table S4

Received: March 15, 2012 Published: April 24, 2012 in the SI) indicate the presence of hydrogen bonds at the metal-free vertices.¹⁰ Thus, **1** appears to be well-preorganized for inserting additional metal ions at the two empty vertices to complete a regular metallosquare. This again underlines the high tendency of HL to form $[2 \times 2]$ grid structures. Electrospray ionization mass spectrometry spectra of MeCN solutions of **1**, however, do only show signals characteristic for the mononuclear species $[Fe(H_xL)_2]^{y+}$ (x = 0, 1 and y = 1, 2; see Figure S3 in the SI), suggesting that the gridlike arrangement observed in the solid state largely dissociates when dissolved (at least in polar solvents such as MeCN).

Treatment of a solution of 1 in nitromethane with an excess of $AgBF_4$ and the subsequent addition of Na_2CO_3 lead to oxidation of the Fe^{II} ions and ligand deprotonation and eventually to the incorporation of Ag^+ to give the target product $[L_4Fe^{III}_2(Ag^I_2)_2](BF_4)_6$ (2). Thin blue crystal plates suitable for X-ray diffraction were grown by the slow diffusion of diethyl ether into a solution of 2 in nitromethane.

The molecular structure of the hexametallic Fe₂Ag₄ complex 2 has been determined by X-ray crystallography. In 2, the roughly parallel arrangement of pairs of ligands is retained, but the protons found at two corners of 1 have been replaced by Ag⁺ and the grid is distorted to a rhomboid. Thus, the $\{N_6\}$ pockets at those opposite corners of the rhomboid each host a Ag_{2}^{I} dumbbell with a remarkably short Ag–Ag distance (2.93 Å for Ag1—Ag2 and 2.88 Å for Ag3—Ag4), which is indicative of $d^{10}-d^{10}$ interactions.¹¹ Ag–N distances range from 2.134 Å $(Ag-N^{pz})$ to 2.914 Å. When the Ag-Ag interaction is neglected, the coordination environment of the Ag⁺ ions is best described as $\{3 + 1\}$: three N donors are arranged almost in a plane, and one of them (a pyridine N) forms a weak asymmetric bridge to the apical position of a neighboring Ag⁺. Additionally, on the backsides, the Ag⁺ ions appear to be stabilized by close contacts (3.12 and 2.99 Å) with the π system of a proximate bipyridine unit that is bound to Fe^{III}. These distances are above the usual Ag $-\pi$ interactions¹² but below the sum of the van der Waals radii.¹³

The two Fe^{III} ions located at the other two vertices of the rhomboid are crystallographically distinct, although their coordination environment is very similar. Their $\{N_6\}$ donor sets originate from two ligand strands, and the coordination sphere is strongly distorted from octahedral (some angles deviate up to 11% from the ideal octahedral angles). The average Fe–N bond length is 1.94 Å; bonds involving the terminal pyridine N atoms are, however, slightly longer (average 1.99 Å). Overall, the six metal ions in 2 form an almost perfectly planar hexagon (maximum out-of-plane deviation 0.2 Å; Figure 2) with two short Ag–Ag edges.

The Mössbauer spectrum of a crystalline sample of 2 at 80 K features an unsymmetric doublet (Figure 3, left); this signature is largely independent of the temperature (see Figure S2). Experimental data have been fitted by assuming two subspectra with slightly different isomer shifts ($\delta_1 = 0.16 \text{ mm s}^{-1}$ and $\delta_2 = 0.05 \text{ mm s}^{-1}$) and quadrupole splittings ($\Delta E_{Q,1} = 3.04 \text{ mm s}^{-1}$ and $\Delta E_{Q,2} = 3.25 \text{ mm s}^{-1}$), both typical for low-spin Fe^{III}. Observing two subspectra for the solid material may be rationalized in view of the presence of two crystallographically distinct Fe^{III} vertices in the crystal structure.¹⁴ Unexpectedly, however, the Mössbauer spectrum of a solution of 2 in MeNO₂ (10 mM) looks very much alike and again requires the assumption of two subspectra for proper fitting of the experimental data ($\delta_1 = 0.12 \text{ mm s}^{-1}$ and $\delta_2 = 0.05 \text{ mm s}^{-1}$; $\Delta E_{Q,1} = 3.15 \text{ mm s}^{-1}$ and $\Delta E_{Q,2} = 3.26 \text{ mm s}^{-1}$; Figure 3,

Figure 2. Left: Molecular structure of **2**, determined by X-ray diffraction at 133 K. Solvent molecules and counterions are omitted for clarity. Top right: Coordination environment of the Ag_2 units. Dashed blue line: Ag-N distances above 2.7 Å. Bottom right: Hexagon of metal ions in **2**.

Figure 3. Mössbauer spectra recorded at 80 K for a crystalline sample (left) and a frozen solution sample (MeNO₂, 10 mM). Subspectrum 1: gray color. Subspectrum 2: patterned.

right). The reason for the nonequivalence of the two Fe^{III} ions in solution remains unclear.

A SQUID measurement of solid **2** confirms the presence of two magnetically uncoupled low-spin Fe^{III} ions: χT is largely independent of the temperature and matches the spin-only value expected for two uncoupled $S = \frac{1}{2}$ sites (with g = 2.10; see Figure S2 in the SI). The electronic spectrum of a solution of **2** in a nitromethane solution (380–1500 nm, Figure 4)

Figure 4. Left: Electronic absorption spectrum of a solution of 2 in MeNO₂ (0.1 mmol L⁻¹). Right: Cyclic voltammogram of a solution of 2 in MeCN/0.1 M nBu_4NPF_6 at a scan rate of 100 mV s⁻¹.

reveals very strong bands in the UV region (<400 nm) due to ligand-based $\pi \rightarrow \pi^*$ transitions. Additional low-energy absorptions at 800 nm ($\varepsilon = 1900 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$) and 580 nm ($\varepsilon = 3200 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}$) are tentatively assigned to ligandto-metal charge-transfer transitions involving the Fe^{III} ions. The spectrum of **2** closely resembles the spectrum of the related mixed-valent grid complex $[\text{L}_4\text{Fe}^{\text{III}}_2\text{Fe}^{\text{II}}_2]^{6+}$ ($\lambda_{\text{max}} = 587$ and 749 nm),⁷ which supports the idea that these two absorptions originate from the Fe^{III} chromophore. Cyclic voltammetry of **2** in a MeCN solution reveals a reversible reduction process at relatively high potential ($E_{1/2} = +0.165 \text{ V}$; Figure 4), which likely represents the Fe^{III}/Fe^{II} pair. This implies that the two ferric ions at two opposite vertices are electronically largely uncoupled, as expected. A further reduction process at more negative potential is irreversible ($E_{\rm p}^{\rm red} = -0.50$ V) and most likely corresponds to the reduction of Ag^I. An anodic wave in the backscan (at $E_{\rm p}^{\rm ox} = -0.10$ V) might be caused by Ag stripping from the electrode.

While a few $[2 \times 2]$ Ag₄ square complexes have been reported,¹⁵ the presence of dumbbell-like Ag₂¹ vertices in **2** appears to be unprecedented for grid-type systems. Also, the combination of Ag^I and Fe in discrete oligonuclear complexes is quite rare because such compounds usually contain Fe^{II,16} in contrast to the heterometallic Ag^I/Fe^{III} complex **2**. In conclusion, the $[2 \times 2]$ grid $[LFe^{II}_{4}]^{4+}$, although quite robust, upon oxidation with Ag^I may loose some of its Fe and transform to an unusual and expanded rhombiclike structure with Ag^I_2 dumbbells at two opposite vertices. This hexametallic $[L_4Fe^{III}_2(Ag^I_2)_2]^{6+}$ complex has now been prepared selectively and fully characterized. The complete exchange of all four Fe vertices in $[LFe^{II}_4]^{4+}$ by Ag^I_2 dumbbells to give an $[L(Ag_2)_4]^{4+}$ gridlike system appears to be an attractive perspective.

ASSOCIATED CONTENT

S Supporting Information

X-ray crystallographic data in CIF format, experimental details, Mössbauer data for 1 and 2, χT versus *T* data for 2, crystallographic data with bond lengths and angles. This material is available free of charge via the Internet at http:// pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: franc.meyer@chemie.uni-goettingen.de.

Author Contributions

All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support by the Deutsche Forschungsgemeinschaft (SFB 602, Project A16) is gratefully acknowledged. We thank Jörg Teichgräber for the cyclic voltammetry measurement.

REFERENCES

(1) (a) Ruben, M.; Rojo, J.; Romero-Salguero, F. J.; Uppadine, L. H.; Lehn, J.-M. Angew. Chem., Int. Ed. 2004, 43, 3644–3662. (b) Dawe, L. N.; Abedin, T. S. M.; Thompson, L. K. Dalton Trans. 2008, 1661– 1675. (c) Dawe, L. N.; Shuvaev, K. V.; Thompson, L. K. Chem. Soc. Rev. 2009, 38, 2334–2359.

(2) Ruben, M.; Lehn, J.-M.; Müller, P. Chem. Soc. Rev. 2006, 35, 1056-1067.

(3) Uppadine, L. H.; Gisselbrecht, J.; Kyritsakas, N.; Nättinen, K.; Rissanen, K.; Lehn, J.-M. *Chem.—Eur. J.* 2005, 11, 2549–2565.

(4) Bassani, D. M.; Lehn, J.-M.; Fromm, K.; Fenske, D. Angew. Chem., Int. Ed. 1998, 37, 2364–2367.

(5) Uppadine, L. H.; Lehn, J.-M. Angew. Chem., Int. Ed. 2004, 43, 240–243.

(6) Klingele, J.; Dechert, S.; Meyer, F. Coord. Chem. Rev. 2009, 253, 2698–2741.

(7) Schneider, B.; Demeshko, S.; Dechert, S.; Meyer, F. Angew. Chem., Int. Ed. 2010, 49, 9274–9277.

(8) (a) Zhang, H.; Fu, D.; Ji, F.; Wang, G.; Yu, K.; Yao, T. J. Chem. Soc., Dalton Trans. **1996**, 3799–3803. (b) Mann, K. L. V.; Psillakis, E.;

Jeffery, J. C.; Rees, L. H.; Harden, N. M.; McCleverty, J. A.; Ward, M. D.; Gatteschi, D.; Totti, F.; Mabbs, F. E.; McInnes, E. J. L.; Riedi, P. C.; Smith, G. M. J. Chem. Soc., Dalton Trans. 1999, 339–348. (c) van der Vlugt, J. I.; Demeshko, S.; Dechert, S.; Meyer, F. Inorg. Chem. 2008, 47, 1576–1585. (d) Klingele, J.; Prikhod'ko, A. I.; Leibeling, G.; Demeshko, S.; Dechert, S.; Meyer, F. Dalton Trans. 2007, 2003–2013. (e) Matsumoto, T.; Shiga, T.; Noguchi, M.; Onuki, T.; Newton, G. N.; Hoshino, N.; Nakano, M.; Oshio, H. Inorg. Chem. 2010, 49, 368–370. (9) Ruben, M.; Ziener, U.; Lehn, J.-M.; Ksenofontov, V.; Gütlich, P.; Vaughan, G. B. M. Chem.—Eur. J. 2005, 11, 94–100.

(10) Both Mössbauer spectroscopy and X-ray crystallography indicate that minor amounts of gridlike species with three or even four Fe^{II} are present in crystalline samples of 1, even after repeated recrystallization (see the SI).

(11) Schmidbaur, H.; Schier, A. Chem. Soc. Rev. 2008, 37, 1931– 1951.

(12) (a) Khlobystov, A. N.; Blake, A. J.; Champness, N. R.; Lemenovskii, D. A.; Majouga, A. G.; Zyk, N. V.; Schröder, M. *Coord. Chem. Rev.* **2001**, 222, 155–192. (b) Mascal, M.; Kerdelhué, J.; Blake, A. J.; Cooke, P. A.; Mortimer, R. J.; Teat, S. J. *Eur. J. Inorg. Chem.* **2000**, 485–490.

(13) Bondi, A. J. Phys. Chem. 1964, 68, 441-451.

(14) The line shape is largely independent of the temperature, which argues against relaxation effects as a cause for the asymmetry.

(15) (a) Schottel, B. L.; Chifotides, H. T.; Shatruk, M.; Chouai, A.; Perez, L. M.; Basca, J.; Dunbar, K. R. J. Am. Chem. Soc. 2006, 128, 5895. (b) Price, J. R.; Lan, Y.; Jameson, G. B.; Brooker, S. Dalton Trans. 2006, 1491. (c) Price, J. R.; White, N. G.; Perez-Velasco, A.; Jameson, G. B.; Hunter, C. A.; Brooker, S. Inorg. Chem. 2008, 47, 10729. (d) Constable, E. C.; Zhang, G.; Housecroft, C. E.; Zampese, J. A. CrystEngComm 2010, 12, 3724.

(16) Piguet, C.; Bernardinelli, G.; Williams, A. F.; Bocquet, B. Angew. Chem., Int. Ed. 1995, 34, 582-584.